Get started with ONNX Runtime in Python
Below is a quick guide to get the packages installed to use ONNX for model serialization and inference with ORT.
Contents
- Install ONNX Runtime
- Install ONNX for model export
- Quickstart Examples for PyTorch, TensorFlow, and SciKit Learn
- Python API Reference Docs
- Builds
- Learn More
Install ONNX Runtime
There are two Python packages for ONNX Runtime. Only one of these packages should be installed at a time in any one environment. The GPU package encompasses most of the CPU functionality.
Install ONNX Runtime CPU
Use the CPU package if you are running on Arm CPUs and/or macOS.
pip install onnxruntime
Install ONNX Runtime GPU (CUDA 11.x)
The default CUDA version for ORT is 11.8.
pip install onnxruntime-gpu
Install ONNX Runtime GPU (CUDA 12.x)
For Cuda 12.x, please use the following instructions to install from ORT Azure Devops Feed
pip install onnxruntime-gpu --extra-index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/onnxruntime-cuda-12/pypi/simple/
Install ONNX for model export
## ONNX is built into PyTorch
pip install torch
## tensorflow
pip install tf2onnx
## sklearn
pip install skl2onnx
Quickstart Examples for PyTorch, TensorFlow, and SciKit Learn
Train a model using your favorite framework, export to ONNX format and inference in any supported ONNX Runtime language!
PyTorch CV
In this example we will go over how to export a PyTorch CV model into ONNX format and then inference with ORT. The code to create the model is from the PyTorch Fundamentals learning path on Microsoft Learn.
- Export the model using
torch.onnx.export
torch.onnx.export(model, # model being run
torch.randn(1, 28, 28).to(device), # model input (or a tuple for multiple inputs)
"fashion_mnist_model.onnx", # where to save the model (can be a file or file-like object)
input_names = ['input'], # the model's input names
output_names = ['output']) # the model's output names
- Load the onnx model with
onnx.load
import onnx onnx_model = onnx.load("fashion_mnist_model.onnx") onnx.checker.check_model(onnx_model)
- Create inference session using
ort.InferenceSession
import onnxruntime as ort
import numpy as np
x, y = test_data[0][0], test_data[0][1]
ort_sess = ort.InferenceSession('fashion_mnist_model.onnx')
outputs = ort_sess.run(None, {'input': x.numpy()})
# Print Result
predicted, actual = classes[outputs[0][0].argmax(0)], classes[y]
print(f'Predicted: "{predicted}", Actual: "{actual}"')
PyTorch NLP
In this example we will go over how to export a PyTorch NLP model into ONNX format and then inference with ORT. The code to create the AG News model is from this PyTorch tutorial.
- Process text and create the sample data input and offsets for export.
import torch text = "Text from the news article" text = torch.tensor(text_pipeline(text)) offsets = torch.tensor([0])
- Export Model
# Export the model torch.onnx.export(model, # model being run (text, offsets), # model input (or a tuple for multiple inputs) "ag_news_model.onnx", # where to save the model (can be a file or file-like object) export_params=True, # store the trained parameter weights inside the model file opset_version=10, # the ONNX version to export the model to do_constant_folding=True, # whether to execute constant folding for optimization input_names = ['input', 'offsets'], # the model's input names output_names = ['output'], # the model's output names dynamic_axes={'input' : {0 : 'batch_size'}, # variable length axes 'output' : {0 : 'batch_size'}})
- Load the model using
onnx.load
import onnx onnx_model = onnx.load("ag_news_model.onnx") onnx.checker.check_model(onnx_model)
- Create inference session with
ort.InferenceSession
import onnxruntime as ort import numpy as np ort_sess = ort.InferenceSession('ag_news_model.onnx') outputs = ort_sess.run(None, {'input': text.numpy(), 'offsets': torch.tensor([0]).numpy()}) # Print Result result = outputs[0].argmax(axis=1)+1 print("This is a %s news" %ag_news_label[result[0]])
TensorFlow CV
In this example we will go over how to export a TensorFlow CV model into ONNX format and then inference with ORT. The model used is from this GitHub Notebook for Keras resnet50.
- Get the pretrained model
import os
import tensorflow as tf
from tensorflow.keras.applications.resnet50 import ResNet50
import onnxruntime
model = ResNet50(weights='imagenet')
preds = model.predict(x)
print('Keras Predicted:', decode_predictions(preds, top=3)[0])
model.save(os.path.join("/tmp", model.name))
- Convert the model to onnx and export
import tf2onnx
import onnxruntime as rt
spec = (tf.TensorSpec((None, 224, 224, 3), tf.float32, name="input"),)
output_path = model.name + ".onnx"
model_proto, _ = tf2onnx.convert.from_keras(model, input_signature=spec, opset=13, output_path=output_path)
output_names = [n.name for n in model_proto.graph.output]
- Create inference session with
rt.InferenceSession
providers = ['CPUExecutionProvider']
m = rt.InferenceSession(output_path, providers=providers)
onnx_pred = m.run(output_names, {"input": x})
print('ONNX Predicted:', decode_predictions(onnx_pred[0], top=3)[0])
SciKit Learn CV
In this example we will go over how to export a SciKit Learn CV model into ONNX format and then inference with ORT. We’ll use the famous iris datasets.
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
iris = load_iris()
X, y = iris.data, iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y)
from sklearn.linear_model import LogisticRegression
clr = LogisticRegression()
clr.fit(X_train, y_train)
print(clr)
LogisticRegression()
- Convert or export the model into ONNX format
from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType
initial_type = [('float_input', FloatTensorType([None, 4]))]
onx = convert_sklearn(clr, initial_types=initial_type)
with open("logreg_iris.onnx", "wb") as f:
f.write(onx.SerializeToString())
- Load and run the model using ONNX Runtime We will use ONNX Runtime to compute the predictions for this machine learning model.
import numpy
import onnxruntime as rt
sess = rt.InferenceSession("logreg_iris.onnx")
input_name = sess.get_inputs()[0].name
pred_onx = sess.run(None, {input_name: X_test.astype(numpy.float32)})[0]
print(pred_onx)
OUTPUT:
[0 1 0 0 1 2 2 0 0 2 1 0 2 2 1 1 2 2 2 0 2 2 1 2 1 1 1 0 2 1 1 1 1 0 1 0 0
1]
- Get predicted class
The code can be changed to get one specific output by specifying its name into a list.
import numpy
import onnxruntime as rt
sess = rt.InferenceSession("logreg_iris.onnx")
input_name = sess.get_inputs()[0].name
label_name = sess.get_outputs()[0].name
pred_onx = sess.run(
[label_name], {input_name: X_test.astype(numpy.float32)})[0]
print(pred_onx)
Python API Reference Docs
Builds
If using pip, run pip install --upgrade pip
prior to downloading.
Artifact | Description | Supported Platforms |
---|---|---|
onnxruntime | CPU (Release) | Windows (x64), Linux (x64, ARM64), Mac (X64), |
ort-nightly | CPU (Dev) | Same as above |
onnxruntime-gpu | GPU (Release) | Windows (x64), Linux (x64, ARM64) |
ort-nightly-gpu for CUDA 11.* | GPU (Dev) | Windows (x64), Linux (x64, ARM64) |
ort-nightly-gpu for CUDA 12.* | GPU (Dev) | Windows (x64), Linux (x64, ARM64) |
Before installing nightly package, you will need install dependencies first.
python -m pip install coloredlogs flatbuffers numpy packaging protobuf sympy
Example to install ort-nightly-gpu for CUDA 11.*:
python -m pip install ort-nightly-gpu --index-url=https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/ORT-Nightly/pypi/simple/
Example to install ort-nightly-gpu for CUDA 12.*:
python -m pip install ort-nightly-gpu --index-url=https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/ort-cuda-12-nightly/pypi/simple/
For Python compiler version notes, see this page