CANN Execution Provider
Huawei Compute Architecture for Neural Networks (CANN) is a heterogeneous computing architecture for AI scenarios and provides multi-layer programming interfaces to help users quickly build AI applications and services based on the Ascend platform.
Using CANN Excution Provider for ONNX Runtime can help you accelerate ONNX models on Huawei Ascend hardware.
The CANN Execution Provider (EP) for ONNX Runtime is developed by Huawei.
Contents
- Install
- Requirements
- Build
- Configuration Options
- Performance tuning
- Samples
- Supported ops
- Additional Resources
Install
Pre-built binaries of ONNX Runtime with CANN EP are published, but only for python currently, please refer to onnxruntime-cann.
Requirements
Please reference table below for official CANN packages dependencies for the ONNX Runtime inferencing package.
ONNX Runtime | CANN |
---|---|
v1.18.0 | 8.0.0 |
v1.19.0 | 8.0.0 |
v1.20.0 | 8.0.0 |
Build
For build instructions, please see the BUILD page.
Configuration Options
The CANN Execution Provider supports the following configuration options.
device_id
The device ID.
Default value: 0
npu_mem_limit
The size limit of the device memory arena in bytes. This size limit is only for the execution provider’s arena. The total device memory usage may be higher.
arena_extend_strategy
The strategy for extending the device memory arena.
Value | Description |
---|---|
kNextPowerOfTwo | subsequent extensions extend by larger amounts (multiplied by powers of two) |
kSameAsRequested | extend by the requested amount |
Default value: kNextPowerOfTwo
enable_cann_graph
Whether to use the graph inference engine to speed up performance. The recommended setting is true. If false, it will fall back to the single-operator inference engine.
Default value: true
dump_graphs
Whether to dump the subgraph into onnx format for analysis of subgraph segmentation.
Default value: false
dump_om_model
Whether to dump the offline model for Ascend AI Processor to an .om file.
Default value: true
precision_mode
The precision mode of the operator.
Value | Description |
---|---|
force_fp32/cube_fp16in_fp32out | convert to float32 first according to operator implementation |
force_fp16 | convert to float16 when float16 and float32 are both supported |
allow_fp32_to_fp16 | convert to float16 when float32 is not supported |
must_keep_origin_dtype | keep it as it is |
allow_mix_precision/allow_mix_precision_fp16 | mix precision mode |
Default value: force_fp16
op_select_impl_mode
Some built-in operators in CANN have high-precision and high-performance implementation.
Value | Description |
---|---|
high_precision | aim for high precision |
high_performance | aim for high preformance |
Default value: high_performance
optypelist_for_implmode
Enumerate the list of operators which use the mode specified by the op_select_impl_mode parameter.
The supported operators are as follows:
- Pooling
- SoftmaxV2
- LRN
- ROIAlign
Default value: None
Performance tuning
IO Binding
The I/O Binding feature should be utilized to avoid overhead resulting from copies on inputs and outputs.
- Python
import numpy as np
import onnxruntime as ort
providers = [
(
"CANNExecutionProvider",
{
"device_id": 0,
"arena_extend_strategy": "kNextPowerOfTwo",
"npu_mem_limit": 2 * 1024 * 1024 * 1024,
"enable_cann_graph": True,
},
),
"CPUExecutionProvider",
]
model_path = '<path to model>'
options = ort.SessionOptions()
options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_DISABLE_ALL
options.execution_mode = ort.ExecutionMode.ORT_PARALLEL
session = ort.InferenceSession(model_path, sess_options=options, providers=providers)
x = np.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]], dtype=np.int64)
x_ortvalue = ort.OrtValue.ortvalue_from_numpy(x, "cann", 0)
io_binding = sess.io_binding()
io_binding.bind_ortvalue_input(name="input", ortvalue=x_ortvalue)
io_binding.bind_output("output", "cann")
sess.run_with_iobinding(io_binding)
return io_binding.get_outputs()[0].numpy()
- C/C++(future)
Samples
Currently, users can use C/C++ and Python API on CANN EP.
Python
import onnxruntime as ort
model_path = '<path to model>'
options = ort.SessionOptions()
providers = [
(
"CANNExecutionProvider",
{
"device_id": 0,
"arena_extend_strategy": "kNextPowerOfTwo",
"npu_mem_limit": 2 * 1024 * 1024 * 1024,
"op_select_impl_mode": "high_performance",
"optypelist_for_implmode": "Gelu",
"enable_cann_graph": True
},
),
"CPUExecutionProvider",
]
session = ort.InferenceSession(model_path, sess_options=options, providers=providers)
C/C++
Note: This sample shows model inference using resnet50_Opset16.onnx as an example. You need to modify the model_path, and the input_prepare() and output_postprocess() functions according to your needs.
#include <iostream>
#include <vector>
#include "onnxruntime_cxx_api.h"
// path of model, Change to user's own model path
const char* model_path = "./onnx/resnet50_Opset16.onnx";
/**
* @brief Input data preparation provided by user.
*
* @param num_input_nodes The number of model input nodes.
* @return A collection of input data.
*/
std::vector<std::vector<float>> input_prepare(size_t num_input_nodes) {
std::vector<std::vector<float>> input_datas;
input_datas.reserve(num_input_nodes);
constexpr size_t input_data_size = 3 * 224 * 224;
std::vector<float> input_data(input_data_size);
// initialize input data with values in [0.0, 1.0]
for (unsigned int i = 0; i < input_data_size; i++)
input_data[i] = (float)i / (input_data_size + 1);
input_datas.push_back(input_data);
return input_datas;
}
/**
* @brief Model output data processing logic(For User updates).
*
* @param output_tensors The results of the model output.
*/
void output_postprocess(std::vector<Ort::Value>& output_tensors) {
auto floatarr = output_tensors.front().GetTensorMutableData<float>();
for (int i = 0; i < 5; i++) {
std::cout << "Score for class [" << i << "] = " << floatarr[i] << '\n';
}
std::cout << "Done!" << std::endl;
}
/**
* @brief The main functions for model inference.
*
* The complete model inference process, which generally does not need to be
* changed here
*/
void inference() {
const auto& api = Ort::GetApi();
// Enable cann graph in cann provider option.
OrtCANNProviderOptions* cann_options = nullptr;
api.CreateCANNProviderOptions(&cann_options);
// Configurations of EP
std::vector<const char*> keys{
"device_id",
"npu_mem_limit",
"arena_extend_strategy",
"enable_cann_graph"};
std::vector<const char*> values{"0", "4294967296", "kNextPowerOfTwo", "1"};
api.UpdateCANNProviderOptions(
cann_options, keys.data(), values.data(), keys.size());
// Convert to general session options
Ort::SessionOptions session_options;
api.SessionOptionsAppendExecutionProvider_CANN(
static_cast<OrtSessionOptions*>(session_options), cann_options);
Ort::Session session(Ort::Env(), model_path, session_options);
Ort::AllocatorWithDefaultOptions allocator;
// Input Process
const size_t num_input_nodes = session.GetInputCount();
std::vector<const char*> input_node_names;
std::vector<Ort::AllocatedStringPtr> input_names_ptr;
input_node_names.reserve(num_input_nodes);
input_names_ptr.reserve(num_input_nodes);
std::vector<std::vector<int64_t>> input_node_shapes;
std::cout << num_input_nodes << std::endl;
for (size_t i = 0; i < num_input_nodes; i++) {
auto input_name = session.GetInputNameAllocated(i, allocator);
input_node_names.push_back(input_name.get());
input_names_ptr.push_back(std::move(input_name));
auto type_info = session.GetInputTypeInfo(i);
auto tensor_info = type_info.GetTensorTypeAndShapeInfo();
input_node_shapes.push_back(tensor_info.GetShape());
}
// Output Process
const size_t num_output_nodes = session.GetOutputCount();
std::vector<const char*> output_node_names;
std::vector<Ort::AllocatedStringPtr> output_names_ptr;
output_names_ptr.reserve(num_input_nodes);
output_node_names.reserve(num_output_nodes);
for (size_t i = 0; i < num_output_nodes; i++) {
auto output_name = session.GetOutputNameAllocated(i, allocator);
output_node_names.push_back(output_name.get());
output_names_ptr.push_back(std::move(output_name));
}
// User need to generate input date according to real situation.
std::vector<std::vector<float>> input_datas = input_prepare(num_input_nodes);
auto memory_info = Ort::MemoryInfo::CreateCpu(
OrtAllocatorType::OrtArenaAllocator, OrtMemTypeDefault);
std::vector<Ort::Value> input_tensors;
input_tensors.reserve(num_input_nodes);
for (size_t i = 0; i < input_node_shapes.size(); i++) {
auto input_tensor = Ort::Value::CreateTensor<float>(
memory_info,
input_datas[i].data(),
input_datas[i].size(),
input_node_shapes[i].data(),
input_node_shapes[i].size());
input_tensors.push_back(std::move(input_tensor));
}
auto output_tensors = session.Run(
Ort::RunOptions{nullptr},
input_node_names.data(),
input_tensors.data(),
num_input_nodes,
output_node_names.data(),
output_node_names.size());
// Processing of out_tensor
output_postprocess(output_tensors);
}
int main(int argc, char* argv[]) {
inference();
return 0;
}
Supported ops
Following ops are supported by the CANN Execution Provider in single-operator Inference mode.
Operator | Note |
---|---|
ai.onnx:Abs | |
ai.onnx:Add | |
ai.onnx:AveragePool | Only 2D Pool is supported. |
ai.onnx:BatchNormalization | |
ai.onnx:Cast | |
ai.onnx:Ceil | |
ai.onnx:Conv | Only 2D Conv is supported. Weights and bias should be constant. |
ai.onnx:Cos | |
ai.onnx:Div | |
ai.onnx:Dropout | |
ai.onnx:Exp | |
ai.onnx:Erf | |
ai.onnx:Flatten | |
ai.onnx:Floor | |
ai.onnx:Gemm | |
ai.onnx:GlobalAveragePool | |
ai.onnx:GlobalMaxPool | |
ai.onnx:Identity | |
ai.onnx:Log | |
ai.onnx:MatMul | |
ai.onnx:MaxPool | Only 2D Pool is supported. |
ai.onnx:Mul | |
ai.onnx:Neg | |
ai.onnx:Reciprocal | |
ai.onnx:Relu | |
ai.onnx:Reshape | |
ai.onnx:Round | |
ai.onnx:Sin | |
ai.onnx:Sqrt | |
ai.onnx:Sub | |
ai.onnx:Transpose |
Additional Resources
Additional operator support and performance tuning will be added soon.