Source code for

# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.

from __future__ import annotations

import os

import numpy as np

from onnxruntime.capi import _pybind_state as C
from onnxruntime.capi.onnxruntime_inference_collection import OrtValue, get_ort_device_type
from onnxruntime.capi.onnxruntime_pybind11_state import OrtValueVector, SessionOptions
from import CheckpointState

[docs]class Module: """Trainer class that provides training and evaluation methods for ONNX models. Before instantiating the Module class, it is expected that the training artifacts have been generated using the `` utility. The training artifacts include: - The training model - The evaluation model (optional) - The optimizer model (optional) - The checkpoint file Attributes: training: True if the model is in training mode, False if it is in evaluation mode. Args: train_model_uri: The path to the training model. state: The checkpoint state object. eval_model_uri: The path to the evaluation model. device: The device to run the model on. Default is "cpu". session_options: The session options to use for the model. """ training: bool def __init__( self, train_model_uri: os.PathLike, state: CheckpointState, eval_model_uri: os.PathLike | None = None, device: str = "cpu", session_options: SessionOptions | None = None, ) -> None: = True options = device.split(":") self._device_type = options[0] device_id = 0 if len(options) < 2 else int(options[1]) self._session_options = session_options if session_options is not None else SessionOptions() self._device = C.OrtDevice( get_ort_device_type(self._device_type, device_id), C.OrtDevice.default_memory(), device_id, ) self._model = C.Module( os.fspath(train_model_uri), state._state, os.fspath(eval_model_uri) if eval_model_uri is not None else None, self._device, self._session_options, ) self._state = state
[docs] def __call__(self, *user_inputs) -> tuple[np.ndarray, ...] | np.ndarray | tuple[OrtValue, ...] | OrtValue: """Invokes either the training or the evaluation step of the model. Args: *user_inputs: The inputs to the model. The user inputs can be either numpy arrays or OrtValues. Returns: The outputs of the model. """ def _has_np_input(user_inputs): return any(isinstance(user_input, np.ndarray) for user_input in user_inputs) def _take_generic_step(forward_inputs): fetches = OrtValueVector() if self._model.train_step(forward_inputs, fetches) else: self._model.eval_step(forward_inputs, fetches) if len(fetches) == 1: return fetches[0].numpy() return tuple(val.numpy() for val in fetches) def _take_step_with_ortvalues(forward_inputs): ort_values = OrtValueVector() ort_values.reserve(len(forward_inputs)) fetches = OrtValueVector() for tensor in forward_inputs: ort_values.push_back(tensor._ortvalue) if self._model.train_step_with_ort_values(ort_values, fetches) else: self._model.eval_step_with_ort_values(ort_values, fetches) if len(fetches) == 1: return OrtValue(fetches[0]) return tuple(OrtValue(val) for val in fetches) if _has_np_input(user_inputs): return _take_generic_step([*user_inputs]) return _take_step_with_ortvalues(user_inputs)
[docs] def train(self, mode: bool = True) -> Module: """Sets the Module in training mode. Args: mode: whether to set the model to training mode (True) or evaluation mode (False). Default: True. Returns: self """ = mode return self
[docs] def eval(self) -> Module: """Sets the Module in evaluation mode. Returns: self """ return self.train(False)
[docs] def lazy_reset_grad(self): """Lazily resets the training gradients. This function sets the internal state of the module such that the module gradients will be scheduled to be reset just before the new gradients are computed on the next invocation of train(). """ return self._model.lazy_reset_grad()
[docs] def get_contiguous_parameters(self, trainable_only: bool = False) -> OrtValue: """Creates a contiguous buffer of the training session parameters Args: trainable_only: If True, only trainable parameters are considered. Otherwise, all parameters are considered. Returns: The contiguous buffer of the training session parameters. """ parameters = OrtValue.ortvalue_from_shape_and_type( [ self.get_parameters_size(trainable_only), ], np.float32, self._device_type, self._device.device_id(), )._ortvalue self._model.copy_parameters_to_buffer(parameters, trainable_only) return parameters
[docs] def get_parameters_size(self, trainable_only: bool = True) -> int: """Returns the size of the parameters. Args: trainable_only: If True, only trainable parameters are considered. Otherwise, all parameters are considered. Returns: The number of primitive (example floating point) elements in the parameters. """ return self._model.get_parameters_size(trainable_only)
[docs] def copy_buffer_to_parameters(self, buffer: OrtValue, trainable_only: bool = True) -> None: """Copies the OrtValue buffer to the training session parameters. Args: buffer: The OrtValue buffer to copy to the training session parameters. """ self._model.copy_buffer_to_parameters(buffer, trainable_only)
[docs] def export_model_for_inferencing( self, inference_model_uri: str | os.PathLike, graph_output_names: list[str] ) -> None: """Exports the model for inferencing. Once training is complete, this function can be used to drop the training specific nodes in the onnx model. In particular, this function does the following: - Parse over the training graph and identify nodes that generate the given output names. - Drop all subsequent nodes in the graph since they are not relevant to the inference graph. Args: inference_model_uri: The path to the inference model. graph_output_names: The list of output names that are required for inferencing. """ self._model.export_model_for_inferencing(os.fspath(inference_model_uri), graph_output_names)
[docs] def input_names(self) -> list[str]: """Returns the input names of the training or eval model.""" return self._model.input_names(
[docs] def output_names(self) -> list[str]: """Returns the output names of the training or eval model.""" return self._model.output_names(