Train, convert and predict with ONNX Runtime#

This example demonstrates an end to end scenario starting with the training of a machine learned model to its use in its converted from.

Train a logistic regression#

The first step consists in retrieving the iris dataset.

from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split

iris = load_iris()
X, y = iris.data, iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y)

Then we fit a model.

clr = LogisticRegression()
clr.fit(X_train, y_train)
LogisticRegression()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.


We compute the prediction on the test set and we show the confusion matrix.

from sklearn.metrics import confusion_matrix  # noqa: E402

pred = clr.predict(X_test)
print(confusion_matrix(y_test, pred))
[[12  0  0]
 [ 0 10  1]
 [ 0  1 14]]

Conversion to ONNX format#

We use module sklearn-onnx to convert the model into ONNX format.

from skl2onnx import convert_sklearn  # noqa: E402
from skl2onnx.common.data_types import FloatTensorType  # noqa: E402

initial_type = [("float_input", FloatTensorType([None, 4]))]
onx = convert_sklearn(clr, initial_types=initial_type)
with open("logreg_iris.onnx", "wb") as f:
    f.write(onx.SerializeToString())

We load the model with ONNX Runtime and look at its input and output.

import onnxruntime as rt  # noqa: E402

sess = rt.InferenceSession("logreg_iris.onnx", providers=rt.get_available_providers())

print(f"input name='{sess.get_inputs()[0].name}' and shape={sess.get_inputs()[0].shape}")
print(f"output name='{sess.get_outputs()[0].name}' and shape={sess.get_outputs()[0].shape}")
input name='float_input' and shape=[None, 4]
output name='output_label' and shape=[None]

We compute the predictions.

input_name = sess.get_inputs()[0].name
label_name = sess.get_outputs()[0].name

import numpy  # noqa: E402

pred_onx = sess.run([label_name], {input_name: X_test.astype(numpy.float32)})[0]
print(confusion_matrix(pred, pred_onx))
[[12  0  0]
 [ 0 11  0]
 [ 0  0 15]]

The prediction are perfectly identical.

Probabilities#

Probabilities are needed to compute other relevant metrics such as the ROC Curve. Let’s see how to get them first with scikit-learn.

prob_sklearn = clr.predict_proba(X_test)
print(prob_sklearn[:3])
[[9.86725337e-01 1.32746438e-02 1.89721531e-08]
 [9.70063113e-01 2.99367777e-02 1.09581160e-07]
 [9.96974758e-07 1.20621762e-02 9.87936827e-01]]

And then with ONNX Runtime. The probabilities appear to be

prob_name = sess.get_outputs()[1].name
prob_rt = sess.run([prob_name], {input_name: X_test.astype(numpy.float32)})[0]

import pprint  # noqa: E402

pprint.pprint(prob_rt[0:3])
[{0: 0.9867253303527832, 1: 0.01327465008944273, 2: 1.897215895496629e-08},
 {0: 0.9700630903244019, 1: 0.029936769977211952, 2: 1.0958115836956495e-07},
 {0: 9.96974563349795e-07, 1: 0.01206216961145401, 2: 0.9879368543624878}]

Let’s benchmark.

from timeit import Timer  # noqa: E402


def speed(inst, number=5, repeat=10):
    timer = Timer(inst, globals=globals())
    raw = numpy.array(timer.repeat(repeat, number=number))
    ave = raw.sum() / len(raw) / number
    mi, ma = raw.min() / number, raw.max() / number
    print(f"Average {ave:1.3g} min={mi:1.3g} max={ma:1.3g}")
    return ave


print("Execution time for clr.predict")
speed("clr.predict(X_test)")

print("Execution time for ONNX Runtime")
speed("sess.run([label_name], {input_name: X_test.astype(numpy.float32)})[0]")
Execution time for clr.predict
Average 5.43e-05 min=4.72e-05 max=7.45e-05
Execution time for ONNX Runtime
Average 1.95e-05 min=1.8e-05 max=2.73e-05

1.9484680024106638e-05

Let’s benchmark a scenario similar to what a webservice experiences: the model has to do one prediction at a time as opposed to a batch of prediction.

def loop(X_test, fct, n=None):
    nrow = X_test.shape[0]
    if n is None:
        n = nrow
    for i in range(n):
        im = i % nrow
        fct(X_test[im : im + 1])


print("Execution time for clr.predict")
speed("loop(X_test, clr.predict, 50)")


def sess_predict(x):
    return sess.run([label_name], {input_name: x.astype(numpy.float32)})[0]


print("Execution time for sess_predict")
speed("loop(X_test, sess_predict, 50)")
Execution time for clr.predict
Average 0.00204 min=0.00162 max=0.00232
Execution time for sess_predict
Average 0.000317 min=0.000312 max=0.000345

0.0003174771599969972

Let’s do the same for the probabilities.

print("Execution time for predict_proba")
speed("loop(X_test, clr.predict_proba, 50)")


def sess_predict_proba(x):
    return sess.run([prob_name], {input_name: x.astype(numpy.float32)})[0]


print("Execution time for sess_predict_proba")
speed("loop(X_test, sess_predict_proba, 50)")
Execution time for predict_proba
Average 0.00225 min=0.00223 max=0.00232
Execution time for sess_predict_proba
Average 0.000317 min=0.000311 max=0.000343

0.00031714682000711037

This second comparison is better as ONNX Runtime, in this experience, computes the label and the probabilities in every case.

Benchmark with RandomForest#

We first train and save a model in ONNX format.

from sklearn.ensemble import RandomForestClassifier  # noqa: E402

rf = RandomForestClassifier(n_estimators=10)
rf.fit(X_train, y_train)

initial_type = [("float_input", FloatTensorType([1, 4]))]
onx = convert_sklearn(rf, initial_types=initial_type)
with open("rf_iris.onnx", "wb") as f:
    f.write(onx.SerializeToString())

We compare.

sess = rt.InferenceSession("rf_iris.onnx", providers=rt.get_available_providers())


def sess_predict_proba_rf(x):
    return sess.run([prob_name], {input_name: x.astype(numpy.float32)})[0]


print("Execution time for predict_proba")
speed("loop(X_test, rf.predict_proba, 50)")

print("Execution time for sess_predict_proba")
speed("loop(X_test, sess_predict_proba_rf, 50)")
Execution time for predict_proba
Average 0.0163 min=0.0159 max=0.0177
Execution time for sess_predict_proba
Average 0.000308 min=0.000302 max=0.000342

0.00030830550000246146

Let’s see with different number of trees.

measures = []

for n_trees in range(5, 51, 5):
    print(n_trees)
    rf = RandomForestClassifier(n_estimators=n_trees)
    rf.fit(X_train, y_train)
    initial_type = [("float_input", FloatTensorType([1, 4]))]
    onx = convert_sklearn(rf, initial_types=initial_type)
    with open(f"rf_iris_{n_trees}.onnx", "wb") as f:
        f.write(onx.SerializeToString())
    sess = rt.InferenceSession(f"rf_iris_{n_trees}.onnx", providers=rt.get_available_providers())

    def sess_predict_proba_loop(x):
        return sess.run([prob_name], {input_name: x.astype(numpy.float32)})[0]  # noqa: B023

    tsk = speed("loop(X_test, rf.predict_proba, 25)", number=5, repeat=4)
    trt = speed("loop(X_test, sess_predict_proba_loop, 25)", number=5, repeat=4)
    measures.append({"n_trees": n_trees, "sklearn": tsk, "rt": trt})

from pandas import DataFrame  # noqa: E402

df = DataFrame(measures)
ax = df.plot(x="n_trees", y="sklearn", label="scikit-learn", c="blue", logy=True)
df.plot(x="n_trees", y="rt", label="onnxruntime", ax=ax, c="green", logy=True)
ax.set_xlabel("Number of trees")
ax.set_ylabel("Prediction time (s)")
ax.set_title("Speed comparison between scikit-learn and ONNX Runtime\nFor a random forest on Iris dataset")
ax.legend()
Speed comparison between scikit-learn and ONNX Runtime For a random forest on Iris dataset
5
Average 0.00592 min=0.0056 max=0.00687
Average 0.00016 min=0.000151 max=0.000182
10
Average 0.00837 min=0.00803 max=0.00937
Average 0.000162 min=0.000154 max=0.000185
15
Average 0.0109 min=0.0105 max=0.0119
Average 0.000163 min=0.000154 max=0.000187
20
Average 0.0134 min=0.013 max=0.0144
Average 0.000162 min=0.000154 max=0.000184
25
Average 0.0157 min=0.0154 max=0.0167
Average 0.000166 min=0.000155 max=0.000191
30
Average 0.0183 min=0.0179 max=0.0193
Average 0.000168 min=0.000157 max=0.000193
35
Average 0.0207 min=0.0203 max=0.0216
Average 0.000168 min=0.000159 max=0.000192
40
Average 0.023 min=0.0226 max=0.024
Average 0.000169 min=0.00016 max=0.000193
45
Average 0.0256 min=0.0252 max=0.0266
Average 0.000171 min=0.000162 max=0.000195
50
Average 0.028 min=0.0276 max=0.0289
Average 0.000175 min=0.000166 max=0.000202

<matplotlib.legend.Legend object at 0x764d9c3850c0>

Total running time of the script: (0 minutes 5.030 seconds)

Gallery generated by Sphinx-Gallery