Train, convert and predict with ONNX Runtime#

This example demonstrates an end to end scenario starting with the training of a machine learned model to its use in its converted from.

Train a logistic regression#

The first step consists in retrieving the iris datset.

from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split

iris = load_iris()
X, y = iris.data, iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y)

Then we fit a model.

clr = LogisticRegression()
clr.fit(X_train, y_train)
LogisticRegression()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.


We compute the prediction on the test set and we show the confusion matrix.

from sklearn.metrics import confusion_matrix  # noqa: E402

pred = clr.predict(X_test)
print(confusion_matrix(y_test, pred))
[[20  0  0]
 [ 0  6  1]
 [ 0  1 10]]

Conversion to ONNX format#

We use module sklearn-onnx to convert the model into ONNX format.

from skl2onnx import convert_sklearn  # noqa: E402
from skl2onnx.common.data_types import FloatTensorType  # noqa: E402

initial_type = [("float_input", FloatTensorType([None, 4]))]
onx = convert_sklearn(clr, initial_types=initial_type)
with open("logreg_iris.onnx", "wb") as f:
    f.write(onx.SerializeToString())

We load the model with ONNX Runtime and look at its input and output.

import onnxruntime as rt  # noqa: E402

sess = rt.InferenceSession("logreg_iris.onnx", providers=rt.get_available_providers())

print(f"input name='{sess.get_inputs()[0].name}' and shape={sess.get_inputs()[0].shape}")
print(f"output name='{sess.get_outputs()[0].name}' and shape={sess.get_outputs()[0].shape}")
input name='float_input' and shape=[None, 4]
output name='output_label' and shape=[None]

We compute the predictions.

input_name = sess.get_inputs()[0].name
label_name = sess.get_outputs()[0].name

import numpy  # noqa: E402

pred_onx = sess.run([label_name], {input_name: X_test.astype(numpy.float32)})[0]
print(confusion_matrix(pred, pred_onx))
[[20  0  0]
 [ 0  7  0]
 [ 0  0 11]]

The prediction are perfectly identical.

Probabilities#

Probabilities are needed to compute other relevant metrics such as the ROC Curve. Let’s see how to get them first with scikit-learn.

prob_sklearn = clr.predict_proba(X_test)
print(prob_sklearn[:3])
[[6.04754662e-03 9.07421548e-01 8.65309057e-02]
 [3.66066466e-06 1.49286306e-02 9.85067709e-01]
 [9.81677977e-01 1.83220003e-02 2.21990156e-08]]

And then with ONNX Runtime. The probabilies appear to be

prob_name = sess.get_outputs()[1].name
prob_rt = sess.run([prob_name], {input_name: X_test.astype(numpy.float32)})[0]

import pprint  # noqa: E402

pprint.pprint(prob_rt[0:3])
[{0: 0.006047549191862345, 1: 0.9074214696884155, 2: 0.08653093874454498},
 {0: 3.660657512227772e-06, 1: 0.014928605407476425, 2: 0.9850677251815796},
 {0: 0.9816780090332031, 1: 0.018321992829442024, 2: 2.219904082778612e-08}]

Let’s benchmark.

from timeit import Timer  # noqa: E402


def speed(inst, number=5, repeat=10):
    timer = Timer(inst, globals=globals())
    raw = numpy.array(timer.repeat(repeat, number=number))
    ave = raw.sum() / len(raw) / number
    mi, ma = raw.min() / number, raw.max() / number
    print(f"Average {ave:1.3g} min={mi:1.3g} max={ma:1.3g}")
    return ave


print("Execution time for clr.predict")
speed("clr.predict(X_test)")

print("Execution time for ONNX Runtime")
speed("sess.run([label_name], {input_name: X_test.astype(numpy.float32)})[0]")
Execution time for clr.predict
Average 9.93e-05 min=6.74e-05 max=0.000347
Execution time for ONNX Runtime
Average 1.9e-05 min=1.77e-05 max=2.92e-05

1.9026599998142045e-05

Let’s benchmark a scenario similar to what a webservice experiences: the model has to do one prediction at a time as opposed to a batch of prediction.

def loop(X_test, fct, n=None):
    nrow = X_test.shape[0]
    if n is None:
        n = nrow
    for i in range(n):
        im = i % nrow
        fct(X_test[im : im + 1])


print("Execution time for clr.predict")
speed("loop(X_test, clr.predict, 50)")


def sess_predict(x):
    return sess.run([label_name], {input_name: x.astype(numpy.float32)})[0]


print("Execution time for sess_predict")
speed("loop(X_test, sess_predict, 50)")
Execution time for clr.predict
Average 0.00267 min=0.00238 max=0.00344
Execution time for sess_predict
Average 0.000327 min=0.00032 max=0.000368

0.0003272352599901751

Let’s do the same for the probabilities.

print("Execution time for predict_proba")
speed("loop(X_test, clr.predict_proba, 50)")


def sess_predict_proba(x):
    return sess.run([prob_name], {input_name: x.astype(numpy.float32)})[0]


print("Execution time for sess_predict_proba")
speed("loop(X_test, sess_predict_proba, 50)")
Execution time for predict_proba
Average 0.0033 min=0.00325 max=0.00341
Execution time for sess_predict_proba
Average 0.000327 min=0.000321 max=0.000354

0.0003274792199977128

This second comparison is better as ONNX Runtime, in this experience, computes the label and the probabilities in every case.

Benchmark with RandomForest#

We first train and save a model in ONNX format.

from sklearn.ensemble import RandomForestClassifier  # noqa: E402

rf = RandomForestClassifier(n_estimators=10)
rf.fit(X_train, y_train)

initial_type = [("float_input", FloatTensorType([1, 4]))]
onx = convert_sklearn(rf, initial_types=initial_type)
with open("rf_iris.onnx", "wb") as f:
    f.write(onx.SerializeToString())

We compare.

sess = rt.InferenceSession("rf_iris.onnx", providers=rt.get_available_providers())


def sess_predict_proba_rf(x):
    return sess.run([prob_name], {input_name: x.astype(numpy.float32)})[0]


print("Execution time for predict_proba")
speed("loop(X_test, rf.predict_proba, 50)")

print("Execution time for sess_predict_proba")
speed("loop(X_test, sess_predict_proba_rf, 50)")
Execution time for predict_proba
Average 0.0217 min=0.0214 max=0.0234
Execution time for sess_predict_proba
Average 0.000321 min=0.000316 max=0.00035

0.000320703599998069

Let’s see with different number of trees.

measures = []

for n_trees in range(5, 51, 5):
    print(n_trees)
    rf = RandomForestClassifier(n_estimators=n_trees)
    rf.fit(X_train, y_train)
    initial_type = [("float_input", FloatTensorType([1, 4]))]
    onx = convert_sklearn(rf, initial_types=initial_type)
    with open(f"rf_iris_{n_trees}.onnx", "wb") as f:
        f.write(onx.SerializeToString())
    sess = rt.InferenceSession(f"rf_iris_{n_trees}.onnx", providers=rt.get_available_providers())

    def sess_predict_proba_loop(x):
        return sess.run([prob_name], {input_name: x.astype(numpy.float32)})[0]  # noqa: B023

    tsk = speed("loop(X_test, rf.predict_proba, 25)", number=5, repeat=4)
    trt = speed("loop(X_test, sess_predict_proba_loop, 25)", number=5, repeat=4)
    measures.append({"n_trees": n_trees, "sklearn": tsk, "rt": trt})

from pandas import DataFrame  # noqa: E402

df = DataFrame(measures)
ax = df.plot(x="n_trees", y="sklearn", label="scikit-learn", c="blue", logy=True)
df.plot(x="n_trees", y="rt", label="onnxruntime", ax=ax, c="green", logy=True)
ax.set_xlabel("Number of trees")
ax.set_ylabel("Prediction time (s)")
ax.set_title("Speed comparison between scikit-learn and ONNX Runtime\nFor a random forest on Iris dataset")
ax.legend()
Speed comparison between scikit-learn and ONNX Runtime For a random forest on Iris dataset
5
Average 0.00811 min=0.00775 max=0.00914
Average 0.000164 min=0.000156 max=0.000185
10
Average 0.0113 min=0.011 max=0.0123
Average 0.000169 min=0.00016 max=0.000192
15
Average 0.0145 min=0.0141 max=0.0154
Average 0.000167 min=0.000159 max=0.000188
20
Average 0.0174 min=0.0169 max=0.0183
Average 0.00017 min=0.000162 max=0.000191
25
Average 0.0203 min=0.0199 max=0.0213
Average 0.00017 min=0.000162 max=0.000193
30
Average 0.024 min=0.0236 max=0.0247
Average 0.000172 min=0.000162 max=0.000196
35
Average 0.0268 min=0.026 max=0.0278
Average 0.000175 min=0.000166 max=0.000199
40
Average 0.0302 min=0.0295 max=0.0308
Average 0.000177 min=0.000169 max=0.000197
45
Average 0.0355 min=0.0326 max=0.0398
Average 0.000176 min=0.000166 max=0.0002
50
Average 0.0355 min=0.035 max=0.0365
Average 0.000181 min=0.000172 max=0.000204

<matplotlib.legend.Legend object at 0x781a6863f700>

Total running time of the script: (0 minutes 6.555 seconds)

Gallery generated by Sphinx-Gallery