Train, convert and predict with ONNX Runtime#

This example demonstrates an end to end scenario starting with the training of a machine learned model to its use in its converted from.

Train a logistic regression#

The first step consists in retrieving the iris datset.

from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split

iris = load_iris()
X, y = iris.data, iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y)

Then we fit a model.

clr = LogisticRegression()
clr.fit(X_train, y_train)
LogisticRegression()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.


We compute the prediction on the test set and we show the confusion matrix.

from sklearn.metrics import confusion_matrix  # noqa: E402

pred = clr.predict(X_test)
print(confusion_matrix(y_test, pred))
[[11  0  0]
 [ 0 10  2]
 [ 0  0 15]]

Conversion to ONNX format#

We use module sklearn-onnx to convert the model into ONNX format.

from skl2onnx import convert_sklearn  # noqa: E402
from skl2onnx.common.data_types import FloatTensorType  # noqa: E402

initial_type = [("float_input", FloatTensorType([None, 4]))]
onx = convert_sklearn(clr, initial_types=initial_type)
with open("logreg_iris.onnx", "wb") as f:
    f.write(onx.SerializeToString())

We load the model with ONNX Runtime and look at its input and output.

import onnxruntime as rt  # noqa: E402

sess = rt.InferenceSession("logreg_iris.onnx", providers=rt.get_available_providers())

print(f"input name='{sess.get_inputs()[0].name}' and shape={sess.get_inputs()[0].shape}")
print(f"output name='{sess.get_outputs()[0].name}' and shape={sess.get_outputs()[0].shape}")
input name='float_input' and shape=[None, 4]
output name='output_label' and shape=[None]

We compute the predictions.

input_name = sess.get_inputs()[0].name
label_name = sess.get_outputs()[0].name

import numpy  # noqa: E402

pred_onx = sess.run([label_name], {input_name: X_test.astype(numpy.float32)})[0]
print(confusion_matrix(pred, pred_onx))
[[11  0  0]
 [ 0 10  0]
 [ 0  0 17]]

The prediction are perfectly identical.

Probabilities#

Probabilities are needed to compute other relevant metrics such as the ROC Curve. Let’s see how to get them first with scikit-learn.

prob_sklearn = clr.predict_proba(X_test)
print(prob_sklearn[:3])
[[9.49737096e-03 9.18002566e-01 7.25000634e-02]
 [9.33228648e-01 6.67709138e-02 4.38521241e-07]
 [9.74890047e-01 2.51097982e-02 1.55069701e-07]]

And then with ONNX Runtime. The probabilies appear to be

prob_name = sess.get_outputs()[1].name
prob_rt = sess.run([prob_name], {input_name: X_test.astype(numpy.float32)})[0]

import pprint  # noqa: E402

pprint.pprint(prob_rt[0:3])
[{0: 0.009497367776930332, 1: 0.9180026054382324, 2: 0.0725000649690628},
 {0: 0.9332286715507507, 1: 0.06677091121673584, 2: 4.385210274904239e-07},
 {0: 0.9748900532722473, 1: 0.025109782814979553, 2: 1.5506961403843889e-07}]

Let’s benchmark.

from timeit import Timer  # noqa: E402


def speed(inst, number=5, repeat=10):
    timer = Timer(inst, globals=globals())
    raw = numpy.array(timer.repeat(repeat, number=number))
    ave = raw.sum() / len(raw) / number
    mi, ma = raw.min() / number, raw.max() / number
    print(f"Average {ave:1.3g} min={mi:1.3g} max={ma:1.3g}")
    return ave


print("Execution time for clr.predict")
speed("clr.predict(X_test)")

print("Execution time for ONNX Runtime")
speed("sess.run([label_name], {input_name: X_test.astype(numpy.float32)})[0]")
Execution time for clr.predict
Average 7.35e-05 min=6.6e-05 max=0.000113
Execution time for ONNX Runtime
Average 1.84e-05 min=1.71e-05 max=2.48e-05

1.8441459999394283e-05

Let’s benchmark a scenario similar to what a webservice experiences: the model has to do one prediction at a time as opposed to a batch of prediction.

def loop(X_test, fct, n=None):
    nrow = X_test.shape[0]
    if n is None:
        n = nrow
    for i in range(n):
        im = i % nrow
        fct(X_test[im : im + 1])


print("Execution time for clr.predict")
speed("loop(X_test, clr.predict, 50)")


def sess_predict(x):
    return sess.run([label_name], {input_name: x.astype(numpy.float32)})[0]


print("Execution time for sess_predict")
speed("loop(X_test, sess_predict, 50)")
Execution time for clr.predict
Average 0.00264 min=0.00234 max=0.0034
Execution time for sess_predict
Average 0.000311 min=0.000306 max=0.00034

0.0003108499999984815

Let’s do the same for the probabilities.

print("Execution time for predict_proba")
speed("loop(X_test, clr.predict_proba, 50)")


def sess_predict_proba(x):
    return sess.run([prob_name], {input_name: x.astype(numpy.float32)})[0]


print("Execution time for sess_predict_proba")
speed("loop(X_test, sess_predict_proba, 50)")
Execution time for predict_proba
Average 0.00329 min=0.00326 max=0.0034
Execution time for sess_predict_proba
Average 0.000312 min=0.000307 max=0.000335

0.00031179584000028625

This second comparison is better as ONNX Runtime, in this experience, computes the label and the probabilities in every case.

Benchmark with RandomForest#

We first train and save a model in ONNX format.

from sklearn.ensemble import RandomForestClassifier  # noqa: E402

rf = RandomForestClassifier(n_estimators=10)
rf.fit(X_train, y_train)

initial_type = [("float_input", FloatTensorType([1, 4]))]
onx = convert_sklearn(rf, initial_types=initial_type)
with open("rf_iris.onnx", "wb") as f:
    f.write(onx.SerializeToString())

We compare.

sess = rt.InferenceSession("rf_iris.onnx", providers=rt.get_available_providers())


def sess_predict_proba_rf(x):
    return sess.run([prob_name], {input_name: x.astype(numpy.float32)})[0]


print("Execution time for predict_proba")
speed("loop(X_test, rf.predict_proba, 50)")

print("Execution time for sess_predict_proba")
speed("loop(X_test, sess_predict_proba_rf, 50)")
Execution time for predict_proba
Average 0.0219 min=0.0216 max=0.0231
Execution time for sess_predict_proba
Average 0.000305 min=0.0003 max=0.000331

0.0003054976200019155

Let’s see with different number of trees.

measures = []

for n_trees in range(5, 51, 5):
    print(n_trees)
    rf = RandomForestClassifier(n_estimators=n_trees)
    rf.fit(X_train, y_train)
    initial_type = [("float_input", FloatTensorType([1, 4]))]
    onx = convert_sklearn(rf, initial_types=initial_type)
    with open(f"rf_iris_{n_trees}.onnx", "wb") as f:
        f.write(onx.SerializeToString())
    sess = rt.InferenceSession(f"rf_iris_{n_trees}.onnx", providers=rt.get_available_providers())

    def sess_predict_proba_loop(x):
        return sess.run([prob_name], {input_name: x.astype(numpy.float32)})[0]  # noqa: B023

    tsk = speed("loop(X_test, rf.predict_proba, 25)", number=5, repeat=4)
    trt = speed("loop(X_test, sess_predict_proba_loop, 25)", number=5, repeat=4)
    measures.append({"n_trees": n_trees, "sklearn": tsk, "rt": trt})

from pandas import DataFrame  # noqa: E402

df = DataFrame(measures)
ax = df.plot(x="n_trees", y="sklearn", label="scikit-learn", c="blue", logy=True)
df.plot(x="n_trees", y="rt", label="onnxruntime", ax=ax, c="green", logy=True)
ax.set_xlabel("Number of trees")
ax.set_ylabel("Prediction time (s)")
ax.set_title("Speed comparison between scikit-learn and ONNX Runtime\nFor a random forest on Iris dataset")
ax.legend()
Speed comparison between scikit-learn and ONNX Runtime For a random forest on Iris dataset
5
Average 0.00803 min=0.00765 max=0.00907
Average 0.000155 min=0.000147 max=0.000178
10
Average 0.0112 min=0.0108 max=0.0122
Average 0.000158 min=0.000149 max=0.00018
15
Average 0.0145 min=0.014 max=0.0154
Average 0.000162 min=0.000154 max=0.000183
20
Average 0.0173 min=0.0169 max=0.0184
Average 0.000161 min=0.000152 max=0.000183
25
Average 0.0205 min=0.0201 max=0.0214
Average 0.000164 min=0.000156 max=0.000186
30
Average 0.0237 min=0.0233 max=0.0247
Average 0.000165 min=0.000157 max=0.000185
35
Average 0.0268 min=0.0262 max=0.0282
Average 0.000166 min=0.000158 max=0.000187
40
Average 0.0295 min=0.0291 max=0.0306
Average 0.000167 min=0.000159 max=0.000189
45
Average 0.0327 min=0.0323 max=0.0338
Average 0.000169 min=0.000162 max=0.000191
50
Average 0.0356 min=0.0353 max=0.0364
Average 0.000171 min=0.000164 max=0.000192

<matplotlib.legend.Legend object at 0x71f100667fa0>

Total running time of the script: (0 minutes 6.383 seconds)

Gallery generated by Sphinx-Gallery